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Received 21 August 1987, in final form 16 November 1987 

Abstract. Applying the thermodynamic formalism to mixing repellers for regular maps, 
we obtain some rigorous relations between the dimensions of the repellers and the dynamic 
properties of the transformation on them. For a class of one-dimensional expanding maps, 
these quantities can be approximated to any desired accuracy by means of the corresponding 
variables for linear expanding maps, which can be computed exactly. Finally, a mathemati- 
cal foundation and some properties of the generalised dimensions are given. 

1. Introduction 

In the last few years several authors have considered the ergodic properties of a 
transformation on a repeller in connection with its geometric structure [l-121. If the 
transformation is sufficiently regular in a neighbourhood of the repeller and uniformly 
hyperbolic on it (mixing repeller), one can apply the powerful techniques of the axiom 
A systems to understand the dynamics on the repeller and its fractal properties. In 
this paper we especially consider a conformal transformation on the repeller, i.e. in 
every point the tangent map is a scalar times an isometry. Sullivan [8] has already 
pointed out the importance of these systems which include all the one-dimensional 
differentiable maps, the rational endomorphisms of the Riemann sphere and every 
group of Mobius transformations of the n-sphere. 

In this paper we get the following results. 
(i)  We bound from above the Hausdorff dimension of any ergodic measure on 

a mixing repeller by means of the Kolmogorov (metric) entropy and the lowest 
Lyapunov exponent. The existence of a similar lower bound in terms of the greatest 
Lyapunov exponent makes the Hausdorff dimension of the measure, when the transfor- 
mation is conformal, equal to the ratio of the metric entropy and the unique Lyapunov 
exponent. This result already exists for analytic maps [ 13, 141 and for one-dimensional 
maps [15], but it has been proved with different techniques. Our method is based on 
proposition 2.1 in Young [ 161 and gives an easy proof in the general case of conformal 
transformations. 

( i i )  As already shown by Eckmann and Ruelle [17] for the almost attractors, also 
for mixing repellers, the theoretic escape rate defined by Kadanoff and Tang [6] is 
simply related to the topological pressure. Combining this result with (i)  we immedi- 
ately get some rigorous relations for the escape rate, the Hausdorff dimension of the 
measure and the Lyapunov exponent, which have already been obtained by Kantz and 
Grassberger [2] and Takesue [3] using heuristic arguments. 

(iii) For a simple one-dimensional mixing repeller (the linear Cantor set) we perform 
the easy computation of the pressure and, following an approximation procedure 

0305-4470/88/092023 + 21$02.50 @ 1988 IOP Publishing Ltd 2023 



2024 S Vaienti 

recently proposed [18,19], we extend it, by a convergence theorem, to each discon- 
nected hyperbolic repeller in dimension one. This allows us to get the escape rate and 
the Hausdorff dimension to any desired accuracy, and then to give a meaning to the 
singularity of the double energy integral with respect to the maximal entropy measure: 
this has intrinsic interest in potential theory. 

(iv) We show that for conformal mixing repellers, and in general for all the systems 
where Young's theorem (theorem 4.4 in [ 161) applies, the generalised dimensions 
introduced in [20] are all equal on infinitely many subsets of full measure. 

2. Hausdorff dimensions of mixing repellers 

We adopt the following definition of mixing repeller (see, for instance, [l]). 

Definition 2.1. Let M be a compact and connected finite-dimensional Riemannian 
manifold of class C", T: M 7 M a sufficiently regular transformation (see below) and 
J a compact subset of M. We say that J is a mixing repeller for T if there exists an 
open subset V x J  such that the following is true. 

(i) q v  is of class C'+" ( E  > 0). (In the following proposition it will be sufficient 
to take T of class C ' .  The stronger regularity is needed for some results quoted in 
the next sections.) Also nz=o T-"V= J. (T-lfl  or T-'[fl] denote the inverse image 

(ii) If U is an open set intersecting J,  there exists an n > O  such that T"U 2.l 

(iii) T is uniformly expanding on J,  i.e. 30  < c < 1 and y > 1: 

of 0.) 

(condition of topological mixing). 

l l ( ~ x T " ) u l l ~  CY"1IUII (2.1) 
Vx E J,  U E TxM and n 3 1. Here (DXT)u (also denoted as D T ( x ) u )  is the tangent map 
of T in X E  M applied to a vector U of the tangent space of M in x and 1 1  1 1  is the 
norm on the tangent bundle with respect to a smooth Riemann metric. It is well known 
that it is possible to choose an adapted smooth Riemann metric for which c = 1 in 
(2.1): in the following we always refer to this metric. By condition (2.1) the Lyapunov 
exponents of any T-invariant and ergodic probability measure p on J are positive and 
therefore the Kolmogorov entropy h ( p )  is finite. We denote by A,,max and A p , m i n ,  
respectively, the largest and smallest Lyapunov exponent of the measure p and with 

H D ( ~ )  = inf {Hausdorff dimension of Y )  
YcJ 

, ( Y , = l  

the Hausdorff dimension of the measure p. 

Theorem 2.2. Let T :  V 2 J H  M be a transformation of class C' and p a T-invariant 
and ergodic non-atomic probability measure on the Bore1 subsets of J. Then 

When the transformation is conformal, the p Lyapunov exponent A, is unique and 
we clearly have 

H D b )  = h(P)/A,.  (2.3) 

Proof: In the proof of the theorem only properties (i) and (iii) of the mixing repellers 
are used; moreover, our results remain true if V is a bounded subset of R". By the 
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very definition of the Hausdorff dimension of the measure and by proposition 2.1 in 
Young [16], it will be sufficient to show that p almost everywhere x E J :  

log  AB(^, I )  n J )  

log pm 1) n J ) <  N ~ L )  

h ( p )  s l i m  inf 
Aw,m*x i+oL log 1 

lim sup . 
/-0+ log 1 A @,min  

where B(x, 1) is the closed ball (in the metric on M associated with the Riemannian 
structure) of centre x and radius 1. The lower bound was essentially proved in Ledrappier 
[21]; it is only necessary to use the Brin-Katok theorem [22] instead of the local 
characterisation of the metric entropy given in [21]. Now we give the upper bound. 
First of all we replace the continuous variable 1 with a discrete sequence I ,  such that 
1, + 0 and log l,/log lntl + 1 when n + +CO. By hypothesis and the easy arguments of 
compactness, we can find a finite cover of J by sufficiently small open balls {F,}E=, 
such that lIDxTII # 0 whent 

M -  
X E  u F, , ,=FcV 

m = l  

and 
s,,, ~-m= n P J , ,  

J = 1  

is the disjoint union of s, < +CO (closed) sets, on each of which the mapping T is a 
diffeomorphism: we denote by TJ;A the inverse of the restriction of T to P,,,. Since 
the functions logll[DT( T,:A(x))]-'ll are uniformly continuous on E, for every E > 0, 
there exists a v > 0 and another finite cover of J by open convex balls { G,}f=, of 
diameter less than v and such that each of their closures is included in one of the F,, 
for which 

(2.4) ll[DT( TiA(x))l-lll c eEIIIDT( T.3Y))l-lIl 
when x and y belong to a certain G, and for every 1 s m s M, 1 s j  c s,. We call x( E )  

the Lebesgue number of this partition. Then we take a finite Bore1 partition 26' of J 
of diameter less than x ( E ) .  Making this the atom of the partition V;,'Ib T-k% which 
contains x E J,  B,(x) will be included in a closed ball B ( x ,  l,(x)) whose radius will 
satisfy 

lim ( - I l o g  l,(x)) = -IJ log l](DxT)-'ll d p  - E  
n - t t c c  n 

p almost everywhere x. Then applying the Shannon-McMillan theorem [23] we get 
p almost everywhere x 

lim sup 1% pCL[B(x, L ( X ) ) l  

tl-+x log L(x)  

t By A we denote the closure of A. 
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by the arbitrariness of E. Since we can apply the above inequality to each power T" 
of the map, p >  1, by the multiplicative ergodic theorem [24], ( l / p )  log ~ ~ ( D x T p ) - l ~ ~  
converges p almost everywhere x to the reciprocal of the smallest p Lyapunov 
exponent, when p + +a, and this proves ( 2 . 2 ) .  To finish the proof, we take an element 
B E 93 and observe that it belongs to a certain G, and Gc F, with 1 G m S M. By 
condition (2.4) and the invariance of T on J we have, for every 1 G j  S s,, 

where x E B and with the assumption that E <log y. By induction it is now easy to 
prove that Vn 2 1 and when the composition of functions, expressed by W, makes 
sense, we have 

= e""X(E) II[DT( TJ(x'))]-'ll d x ( e )  
J = O  

where x'  is any point in T;:,)B; i, E (1 , .  . . , s,,) and 7, E (1 , .  . . , M ) .  
If we now take a point X E J ,  &(x)  is included in an element of the partition 

93. Therefore, by the above considerations, it is sufficient to take p almost T-(  n - 1 )  

everywhere x 

for E < logy and n > 2. 

Remark 2.3. If the mapping has degree s, and if we consider the maximal entropy 
measure on J, we have h ( p )  =log s. Besides, and can sometimes be 
replaced, respectively, with max,,, logllD,TIl and min,,, l o g ~ ~ ( D x T ) - ' ~ ~ ~ l ,  which are 
easier to compute and the upper bound remains strictly smaller than the dimension 
of the manifold (here (D,T)-' denotes the inverse of the tangent map in x). In 0 3 
we give an easy example where these considerations apply. A result parallel to (2.2) 
for a diffeomorphism of a compact Riemannian manifold is given in [16]. 

3. Thermodynamical properties of mixing repellers 

For conformal transformations of class Cl+', the Hausdorff dimension dH of J is 
determined by the Bowen-Ruelle formula [ 11: 
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where the maximum is taken on the set of T-invariant probability Borel measures on 
J, M,(J) ,  and P is the (topological) pressure [25,26]. The maximum has attained, 
for a unique ergodic Borel measure, the equilibrium measure p E  for - d ,  logllD,T1I. 
Later on we will use a general definition of the pressure and its specialisation to 
topologically mixing dynamical systems. In the first case, let T :  J + J be a continuous 
function of a compact metric space J into itself and cp an element of the Banach space 
C(J,R) of the real-valued continuous functions on J equipped with the C" norm. 
Then let do be an open cover of J and diam do its diameter. Following Walters [26] 
we define 

P,( T, cp, do) = inf cp (  T'(x)) ; cy: finite subcover of dn-' 
A E a  X E A  

with 

" - 1  
g n - I  - - v T- 'dQ.  

! = O  

Then the thermodynamic limit: 

1 
n.++x n 

exists and finally the pressure of the function cp is defined as 

P( T, cp, do) = lim - log P,( T, cp, do) 

P(  T, c p )  = lim [sup{P( T, cp, do)ldiam do< S}]. 
6-0 

We recall that, in general, the pressure is given by the variational principle [25,26]: 
,4 

P(T, (P)=  P E M T ( J )  SUP \ h ( p ) + J  J cp(x)dir(x)}. 

If T is topologically mixing on J, the functions F,, defined on cp E C(J ,  R) as 

(3.3) 

tend pointwise to P( T, c p )  when n + +a. We recall that the condition of topological 
mixing implies that the periodic points of T", Fix T", are dense in J (see [25], ch 7, 
example 4). Moreover the equilibrium measure for cp, i.e. the unique T-invariant and 
ergodic probability measure which realises the maximum in (3.2), is the weak limit of 
the sequence of the T-invariant normalised measures p ' " )  with support in Fix T", 
given by 

(3.4) 

where z E Fix T". For the derivation of formulae (3.3) and (3.4) see [25], § 7.28. Before 
going on, we also have to recall the definition of the escape rates. Let us take a 
neighbourhood U of the repeller J and spray uniformly on it (with respect to the 
Riemannian measure on M 1 J )  a large number of points No.  After n iterations and 
for large n the number of points in U, N, ,  decays exponentially as (N, /  No)  - q-" [6]. 
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We call pE = log q the experimental escape rate. For the hyperbolic repelling sets, 
Kadanoff and  Tang [6,7] have conjectured that pE is the same as the theoretical escape 
rate pr defined as 

This definition is formally derived by the ergodic properties of the axiom A systems; 
another characterisation will be useful. Indeed, the expanding condition (2.1) implies 
that the tangent map: D,T" : TxM + TTy M,  x E J is invertible for n 5 1 and moreover 
Idet(U - D,T")I + ldet D,T" when n + and uniformly on J. Using this fact in (3.5) 
and computing the pressure of (-1ogldet DxTI) by means of (3.3) we immediately get 

p T =  -P(  -logidet D,Ti). (3.6) 
Now we consider the equilibrium measure PE for the function -1ogldet D,TI. Since 
P E  is T-ergodic we have 

1, logidet D x T l  dPE(X)=C l r A G E , t  

where A,,,, denotes the ith Lyapunov exponent of multiplicity l , ,  2,<1 = d,  d being the 
dimension of the manifold M. Applying this to the variational principle (3.2) we obtain 

which, for conformal transformations, becomes simply 

PT= dAp, -h(PE) .  (3.7) 
In  the following we limit ourselves to these transformations. For every other T-ergodic 
measure p, (3 .7)  gives 

P T S  dA, - h ( P ) .  (3.8) 

H D ( P )  -PTIA@. (3.9) 

Therefore, by (2.3) 

The equality in (3.9) is attained for the equilibrium measure P E  which, as we have 
already said, is the weak limit of the measures given by (3.4) with q ( x )  = - d  logllD,TIl. 
These measures coincide exactly with the sequence of probability measures proposed 
with heuristic arguments by Kantz and Grassberger [2]. 

They call PE the 'natural' measure for the repeller; as pointed out by the same 
authors, this natural measure does not coincide, in general, with the measure of maximal 
entropy (or  balanced measure, see below) for the repeller. As we shall see soon, this 
second measure is particularly useful in computing the dynamical variables of the 
repeller, since it can be reconstructed by a 'time series' starting from a point in a close 
neighbourhood to the repeller itself. In this sense, the balanced measure is much more 
'natural' than the preceding one. Now we go back to formula (3.1) which allows us 
to determine the Hausdorff dimension d ,  of the repeller. If we call pE the equilibrium 
measure for ( - d H  log/lD,T((),  since d ,  = h ( p E ) / A W E ,  inserting it in (3.8) we obtain 

d h ( P E )  s- d h ( P E )  dH S 
P T + ~ ( P E )  h ( ~ E ) ( p , / h ( p E ) +  1)' 

Since the topological entropy h,,, maximises the metric entropies, substituting it in 
place of h ( @ J  we obtain the following proposition. 
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Proposition 3.1. For a conformal mixing repeller in a compact Riemannian manifold 
of dimension d,  the Hausdorff dimension satisfies the bound: 

(3.10) 

This inequality generalises to every dimension d the same relation obtained, in a 
non-rigorous way, by Takesue [3] for one-dimensional maps. 

4. Linear Cantorian approximation 

In this section, we develop the approximation scheme proposed in [18,19] and apply 
the results of 9 9  2 and 3 to a simple class of one-dimensional mixing repellers, already 
studied by Pelikan [ 111. They are the invariant sets of maps T from an open neighbour- 
hood V of [0,1] into iw and of class C 2  on V ,  with the following properties: 

(ii) T is expanding on T-'[O, 13, i.e. I T ' ( x ) l a  y > 1 for x E T-'[O, 11, 
(iii) T-'[O, 11 is the disjoint union of s (closed) intervals. 
With these prescriptions the repeller 

(i)  T-l[O, 11 = LO, 11, 

m 

J =  n T - ~ [ o ,  11 
k=O 

is a completely invariant Cantor set. 
We call these maps 'Cantorian maps with s inverses'. The S "  pairwise disjoint sets 

Aj," fl J, j = 1 , .  , . , s", where Aj," belongs to T-"[O, I], form a cover of J We denote 
by TT" the inverse of the restriction of T" to and call {T;"};" the inverse 
determinations of T". For an easy distortion argument, see, for example, [ l l ] ,  there 
is a constant g 5 1 such that, for every pair of points ( x ,  y )  in the same Aj," and for 
every n > 0 ,  we have 

g - ' / ( T " ) ' ( y ) /  6 I(T")'(x)l gl(T")'(y)I .  (4.1) 
Now we need the following. 

Theorem 4.1. There exists a unique probability measure pB on the Borel subsets of 
[0, 11 with the following properties. 

(i) pB is supported on J. 
(ii) For every continuous function f on [0,1] and any point X ~ E  [0,1] we have, 

uniformly on [0, 11, 

(iii) For every Borel set A c  [0, 11 where T is injective we have pB(A)=  

(iv) pB is T invariant and ergodic; moreover h ( p B )  = log s =topological entropy. 
( l I S ) P B (  TA).  

We call pB the 'balanced measure' on J. 

Outline of the proof: The proof repeats word for word the proof of the existence and 
unicity of the balanced measure for rational endomorphisms of the Riemann sphere 
given by Ljubich [27]; it is greatly simplified because the map is uniformly expanding. 
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A typical condition of the rational maps that is crucial in the proof, i.e. the rational 
homogeneity of the Julia set [28], also holds for the repeller J.  In fact, for every open 
set 0 containing a point of J,  we can find an integer n > 0 such that T"0 2 [0,1] 2 J 
(topological mixing). If this were not true, there would be at least one point p E [0, 11 
such that On T - " { p } = 0 ,  Vm > O .  This is impossible, since the set { T - " { p } } ~ = , ,  
p E [0,1], is dense in J (see, for example, [12], theorem 3). 

A particular family of Cantorian mappings L : V + R plays a special role for our further 
considerations: they are piecewise linear on L-'[O, 11 and we denote with A;', i = 
1, .  . . , s, the absolute values of their slopes. We call their invariant repeller J linear 
Cantor set with s scales ( A , ,  . . . , As)? .  

Lemma 4.2. If L is a linear Cantorian mapping with scales A , , .  . . , A , ,  the pressure 
of the function S loglL'(z)l with L and L' restricted to J and S E R  is 

P ( L ,  6 loglT'(z)l) =log(A;'+. . .+A; ' ) .  (4.3) 

ProoJ: We consider the cover of J (both open and closed in the induced topology): 
do = {Ai,' = L;'[O, 11 f l  J, i = 1, . . . , s}. Following the definition and the notation for 
the pressure given in P 3, we begin to observe that P ( T ,  S loglL'(z)l) = 
P(L ,  S loglL'(z)l, do), since diam(d")+O as n +oo ([26], theorem 1.9). Moreover, 
since d k  c dk-l for every k > 1 and dk-l is a minimal open cover of J, we have (the 
sets Ai,k, i = 1,.  . . , s k ,  belong to C k [ O , l ]  fl J ) :  

Pk(4 loglL'(z)l, do) 

Hence 

By relation (3.6) we can write explicitly the theoretical escape rate for the Cantor set: 

~T=- log(Al+.  . . + A , ) .  (4.4) 

A y H + . .  .+A:+'= 1 (4.5) 

We also recall that the Hausdorff dimension d ,  of J is determined by the equation [29] 

and the Lyapunov exponent of the balanced measure pB is given by (we use here 
statement (iii) of theorem 4.1) 

= f: 1 loglL'(z)l d p B =  -(l/s)[log(A,)+. . .+log(A,)]. 
i =  1 J , - l  [ J ]  

(4.6) 

t To avoid confusion, we recall that A with subindex a measure denotes a Lyapunov exponent, while A with 
index an integer number is a scale of a linear Cantor. 
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Before going on, we give an easy example of a non-conformal mixing repeller where 
the bounds (2.2) apply. Let us consider two Cantor sets JI and J2 generated by linear 
functions L1 and L 2 ,  each of which has two scales ( q ; ' ,  4;') and (q; ' ,  q i l ) ,  respectively, 
ordered as 2 < q1 < q2 < q3 < q4; we endow them with the balanced measures pBI and 
pB2. Then we put (.I1 x J 2 )  c R2 the Cartesian product of the Cantor sets with the 
measure p = (pB, x pB2) on it and the transformation L: (J1 x J 2 )  + (J1 x J 2 )  defined as 
L(x, ,  x2) = (Llx l ,  L2x2), x, E J1, x, E J 2 .  Since h ( p )  =log 4, 

max log/lD,Lll= log q4 
X E J ,  x J 2  

x = (x, , x,) and 

min l o g ~ \ ( D x L ) - l ~ ~ - l  =log q1 
X E JI x J ,  

by remark 2.3 we conclude that 

log 4 log 4 
1% q4 1% 91 
- S  H D ( ~ )  <-----. 

(For similar bounds applied to Julia sets, see [30].) 
Besides the Hausdorff dimension, there is another useful index to characterise the 

fractal properties of an invariant set J. Let p be a probability measure supported by 
J. If we define the 'energy integral': 

then, by a remarkable theorem of Frostman [29], we have 

cycL = inf{cY; 4 " ( p )  = +a} 6 d H ( J ) .  (4.8) 
We call cy, the divergence abscissa of the measure p (dH(J),  or simply d H ,  is again 
the Hausdorff dimension of J ) .  If, for every cy, the energy integral is computed with 
respect to the unique measure which minimises (4.7) (the so-called 'equilibrium 
measure'; see [31])t the infimum in (4.8) gives exactly the Hausdorff dimension. For 
some easy models [9,33], the divergence abscissa was exactly computed with respect 
to the balanced measure and it was shown that it equals the correlation dimension, 
introduced by Grassberger and Procaccia [34]. 

For a linear Cantor set with scales ( A l , .  . . , A , )  we have shown [33] that the 
divergence abscissa with respect to the balanced measure, which we simply call cy, is 
the real positive solution of the equation: 

A y m + .  . . + A y "  = s 2 .  (4.9) 
Inspecting formulae (4.3) and (4.9) we see that a is the unique real positive root of 
the equation: 

(4.10) 

This relation shows that the divergence abscissa has a dynamical meaning. This is a 
novelty in potential theory, where only the equilibrium measures (which are almost 
always very difficult to construct: see, for example, [32]) carry information about the 

P( T, cy loglL'(z)l) =log s2 .  

t We want to specify that the equilibrium measures of potential theory are, in general, different from the 
equilibrium measures for the pressure; see [32] for a discussion of this topic. 
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geometric structure of the fractal. Now we show that (4.10) also holds in a weaker 
form for non-linear Cantorian mappings with s inverses. This result is part of a more 
general theorem concerning the approximation of the dynamical and  geometric proper- 
ties of a general one-dimensional repeller by means of linear Cantor sets. The starting 
point is to associate with each Cantorian mapping T with s inverses, a family { L,}z= I 

of linear Cantorian mappings in the following way: L, has s m  scales A m , l , .  . . , A m , s ~ ~ l ,  

determined by 

(4.11) 

If J is the repeller of T, we call C, the repeller of L,, p is the balanced measure for 
T and p,,, is the balanced measure for L,. Finally if d H ,  pT and cy denote, respectively, 
the Hausdorff dimension, the escape rate and  the divergence abscissa for T, d :, p; 
and cy, will be the corresponding quantities for L,. In [19], we have shown that 
lim,+= A J m  = A ,  and  then, as an  .easy consequence, lim,+m H D ( ~ , )  = H D ( ~ ) .  

Moreover we have proved that l imm+= d :  = d ,  with geometric fractal arguments. This 
result is a corollary of the following theorem. 

Am,l = diam( T;"[O,l]) i = 1 , .  . . , sm.  

Theorem 4.3. If the maps we are considering are restricted to their repellers we have 

1 
m 

lim - P ( L , ,  6 loglLk(z)l) = P ( T ,  6 loglT'(z)l) 

6 E R, and the convergence is uniform in 6 on any compact subset of R. 
As a consequence we have this corollary. 

Corollary 4.4. 
m (i) lim,,,-,= p T / m  = PT.  

(ii) lim,+m cy, = G and E satisfies P (  T, E loglT'(z)/) = log  s2 and E 6 H D ( ~ )  = 

(iii) l imm+m d :  = d , .  
log s/A,. 

Proof of theorem 4.3 and corollary 4.4. Using the notations, the topological prescrip- 
tions and  the easy arguments of lemma 4.2 we have, if is the cover of J by the 
sets { T;"[O, 11 n J } ,  i = 1 , .  . . , sm, m 3 1: 

We suppose here that 6 > 0. If 6 < 0 we replace max with min. Since every inverse 
determination of T" is C 2  on [0, 11, there exists a point .$E int {T;"[O, l]}, i =  
1 , .  . . , s m ,  such that 

A,,,, = I TYm(l) - T;"(O)/ = I(  T*) ' ( t ; ) l - ' .  

Using this fact and condition (4.1) we get 

g - S k ( A i : l + .  . . + A i : s , , l ) h G  S (Tm, log l (Tm) ' (x ) lS ,  & , - I )  

<g"(A,:l+. . . + A , : , f 3 i ) k .  
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We take the logarithm, divide by k and finally set k +  +a?. Thus we get 

and this proves the theorem. 

begin by noting that 
If we now put 6 = -1 and by (3.6) we obtain (i) of the corollary. To show (ii), we 

log s log s 
-sa, < HD(~,)s----- 
log F log Y 

where F = maxgET-i[O, I T'(5)l. This follows by applying Jensen's inequality to 
equation (4.9) and using, always in (4.9), the obvious condition (l/F") G Am,i ,  V i  = 
1 , .  . . , s"'. By (4.10) and the last inequality of the proof of theorem 4.3, we get 

IP(T a m  logIT'(z)I)-logs2/ 

log s log g 

l o g y  m * 

lim P(  T, a ,  log1 T'( z) l )  = log s2 .  

<-- 

Then 

m - x  

Now we prove that the sequence a ,  has a limit; it is bounded and if we put 
a - = l i m i n f , , , a , , a - ~ D  and a+=limsup, , ,a , ,a+ED, where D =  
[log s/log F, log s/log y ] ,  there are two subsequences amk  and a,! that converge, 
respectively, to a- and a+. By the uniform continuity in a of the pressure on 0, we 
have 

lim P( T, a ,  log1 T ' ( x ) l )  = lim P( T, cymi log1 T'(x)l) 
m-3c k-to;:  

= P( T, a -  log1 T'(x)J) = log s 2  

and the same holds if we replace a -  with a+. But, since P (  T, 6 log1 T'(x)l) is injective 
for 6 ER, being that P(L,, 6 loglLk(x)l), we conclude that a -  = a+ = lim,,,+m a ,  = ci. 
Then 

P( T, ci log/ T'(x)l) =log s2 .  

Finally, since, as we have already said, 1immax H D ( ~ , )  = H D ( ~ ) ,  we have a7 c H D ( ~ ) .  

The same arguments show point (iii) of corollary 4.4: it is only sufficient to replace 
(4.10) for linear mappings, with the Bowen-Ruelle formula P(L,, - d z  log lLk(x ) l )  = 0. 
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Inspecting condition (ii) of corollary 4.4, one would expect that E = a, where a is the 
divergence abscissa for T We are only able to prove that the following theorem is true. 

Theorem 4.5. a G G. As a consequence of the proof we also have that the approximant 
energy integrals Jc,,, IC,,, (x-yl-' dp,(x) d@,(y) converge pointwise for 6 <a to the 
energy integral for the map T with respect to the balanced measure. 

ProoJ: We suppose, in contrast, that a > E and consider a value cu' with CU < 6 < a in 
such a way that the double integral J j  5, d p ( x )  dp(y)lx -yl-' is well defined. To study 
this integral, we apply formula (4 .2) .  We begin to define the functions on the set 
Q = { (x, y )  E R2; 0 < ( x  - y (  s 1 ) :  

We clearly have 

J, J, dp(x )  dF(y)lx-yl-"lim.+, 

In the integral on the right-hand side we apply formula ( 4 . 2 )  twice to a power TE of 
the map, m 3 1 ,  namely it gives 

where {to} is any point in [0, I], the tilde on the series means that we only sum on the 
& that do not belong to the open ball of centre 5, and radius l / n ,  and N n ( k ,  5 , )  is the 
cardinality of the set R(k, 5 , ) = { 5 k ~ ( T " ' ) - ~ { & J ;  15k-( ,1<1/n} .  

If we now put & and &, two elements, respectively, of the sets (L,)-'{&,) and 
( L , ) - k { 5 0 } ,  such that each pair (t,, 6) and ( t k ,  & )  belongs to the same element of the 
collection of the sm disjoint sets given by T-"[O, 1 1 ,  we clearly have 

15, - '!kl 2 6 ,  + 16 - s k i  

where A, = diam{ T-"[O, I]}. We call 'corresponding' the elements of a couple (6, &). 
We now fix 5, and consider the points & E n(k, 5,). If we sum on the corresponding 
elements, we get 

h E L,,, )-"it01 & € ( L , , > ) - h { t d  

The last inequality is justified if we put n 2 l / A ,  and this can certainly be satisfied 
because we are working at rn fixed and the limit in n comes before this. In conclusion 
we have 

( 2 A m + l . $ - f k 1 ) - ' s  C ( A , ) - ~ ~ ~ n ( k , 5 , ) ( A , ) - 6 ~ n ' ~ n ( k , 5 , ) .  

i, i , d p ( x )  ~ ~ ( Y ) J ~ - Y I - ~ Z J  J d p m ( X ) d p m ( y ) ( J x - y 1 + 2 A m ) - ' .  
c,,, c,,, 

If we now fix E > 0, there is a number m p  > 0 such that, for every m > m F ,  we have 
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Taking the lim sup for m + +a, and since E M b i t r a r y ,  we get 

since, for m + m, only a finite number of the divergence abscissae for the linear Cantor 
sets stay on the right of 6. Thus aS6. When S<a,  the energy integral for the 
non-linear map T is convergent; if we repeat the above arguments interchanging the 
maps Lm and Tm, we get 

dpm (XI d ~ m  ( Y ) ( I x  F Y I  + 2Am )-' 

Taking the limit for m +m we obtain the last assertion of the theorem. 

Remark 4.6. Given a non-linear Cantorian mapping it is very easy to compute numeri- 
cally the sets T;"[O, I ]  and all the variables for the linear mapping through (4.4)-(4.6) 
and (4.9), also for large m. In [ 191 we have applied this method to the quadratic map 
z' = z2 - p,  p > 2,  whose repeller is a totally disconnected Julia set, and we have shown 
that the convergence of the various quantities given by corollary 4.4 is rather fast and 
quite good; moreover the method can be easily extended to conformal mappings in 
the plane. However a question remains open: referring to theorem 4.5, is a = 6? Is 
formula (4.10) true also for a non-disconnected mixing repeller? 

Remark 4.7. Inspecting the left-hand side of the limit in theorem 4.3, we recognise in 
it the thermodynamic limit of the partition function: 

Z m ( S ) =  1 IAI-' 
A s d " '  

where IAl= diam A and, as usual, 

i=O 

do being the partition: do = { T;'[O, 11 fl J,  i = 1 , .  . . , s}. The same limit holds if we 
consider for a generic conformal mixing repeller J a Markov partition [25,35] of J of 
sufficiently small diameter. More precisely we have this theorem. 

Theorem 4.8. Let T be a C' conformal transformation of degree s defined in an open 
neighbourhood of the mixing repeller J. For every E > 0 there exists a ,y( E )  > 0 such 
that, if A' is a Markov partition of J of diameter less than x ( E ) ,  we have pointwise 
for every S ER: 

where 
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Prooj We begin by observing that by theorem 2.2, fixed at E > 0, there exists a number 
x ( E ) > O  such that, if A is a subset of J with ~ A / < X ( E )  and A," is an  element of 
T-"'[A],  a = 1 , .  . . , s m ,  we have 

where x is any point in A,". Using this fact we have (we suppose here 6 > 0; for the 
other case, similar bounds apply; moreover, we neglect the finite terms when the limit 
for m + cc is performed): 

Now we consider the lower bound and compute IIDxTmllG at the point X E  M," where 
it attains the maximum. Then the quantity 

coverges to the 'pressure' Pc( T, Slog(lD,TII) constructed on a closed cover of J (see 
[26] ,  0 3) .  But, being do a pG-disjoint closed cover of J,  where pa is the (ergodic) equi- 
librium measure for the function 6 log)/ D,TII, by lemma 3.4 in [26]  we can conclude that 

Pc(T, 6 l og l lD ,TI l )~  h ( p 6 ) + 6  logllD,TII d p u ,  = P(T, 6 logllD,TII). 

On the other hand, if do is an  open cover of J of diameter less than X ( E )  such that 
each element MO, E do is included in an element fi; of do and fi: fl 6; = 0 when 
M:fl M i = 0 ,  given M , " E ~ ~  it is easy to see, for the properties of the Markov 
partitions?, that there exists a n  open set fi," E d"', M," II fi: # 0, which is not covered 
by the other sets of Am. 

Therefore, for each open subcover S of d m  we have, choosing the points x in the 
sets of type fi," described above, 

j/D,T"IISG sc inf "ir 0' { s"' c E SUP s t , '  llDJ"Il"j. 
x c M t n $ t  

Taking the logarithm and  dividing by m, we have that the right-hand side tends to the 
pressure P( T, 6 logllD,T/I) when m + +cc (see 0 3). Combining this with the preceding 
result for the lower bound, and  since E can be chosen arbitrarily small, we obtain the 
desired result. 

5. Generalised dimensions 

Recently an  infinite number of dimensions have been introduced to characterise the 
invariant strange set J [20] .  In this section we propose a new definition of the spectrum 
of generalised dimensions which is independent of the measurable partition of the set 
and which leads, if referred to the subsets of full measure, to define the generalised 

? Here we essentially use the facts that, if { M , ,  . . . , M,,} is a Markov partition, then T ( u ,  J M , )  c U, dM, ,  
where J M ,  is the boundary of M ,  and  for each element M,: of the set T - ' [ M , ] ,  i = 1,. . . , p ,  I = 1 , .  . . , s, 
there exists 9 such that M,: c M,, (see [35]). 
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dimensions of the measure that are the natural extension of the Hausdorff dimension 
of the measure (see D 2). 

Actually some of our results apply to all the compact Riemannian manifold for 
which the limit 

exists p almost everywhere (see § 2 for the mathematical notation). As well as for 
conformal mixing repellers, the existence of the limit (5.1) has been proved for a class 
of non-uniformly expanding maps of the interval [ 151, for the Lozi map [ 361, and for 
C2 diffeomorphisms of compact surfaces [16]: in this case, if p is an ergodic probability 
measure with p Lyapunov exponents ill > 0 > h2 then 

The definition of the generalised dimensions given in [20] starts by considering a 
compact subset J of a Riemannian compact manifold M, of p measure 1, where p is 
a probability measure on the Borel subsets of M. Then one takes a countable partition 
of J by p measurable sets {Ak}Pz1 of diameter less than E and define the partition 
function, for real q and T (the reference to the partition { A k }  is dropped), 

When E + 0, it was argued that r(q, T )  goes to infinity for T >  T ( q )  and to zero for 
T < T (  q ) .  This allows us to define the generalised dimensions D, as 

D,(q - 1) = 7 ( q ) .  (5.4) 

Just using this definition, applied to conformal mixing repellers and for certain 
partitions of the set, it is possible to give a complete characterisation of the generalised 
dimensions computed with respect to the equilibrium measures of the pressure (the 
Gibbs measure). We return to this point below; here, we want to stress the dependence 
of the dimensions on the measure supported by the set. 

The definition of the partition function (5.3) is not satisfactory, because it does not 
permit us to verify the existence of the various limits involved in it. So we slightly 
change the definition in such a way as to transform the partition function into a measure 
on the Borel subset of M. To do this we begin by putting 

where the infimum is over all countable coverings Bf = {Bk(x)};Y=, of a subset Jc M, 
by closed balls B k ( x )  of centre X E J  and of diameter less than 1. As before, p is a 
probability measure on the Borel subsets of M. When 1 decreases, the infimum is taken 
over a smaller set of coverings. Then H; , , ( J )  is a non-decreasing function of 1 when 
1 O+ and the following (possibly infinite) limit exists: 

By standard arguments similar to those which define the Hausdorff measures [23], it 
is straightforward to verify that HG(J)  is, as a function of J, a metric outer measure, 
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so that it becomes a measure on the Borel subsets of M [29]. From now on, J c  M 
will be a subset of this type. Since 

for T I <  T 
1 

3 I”’ H ; : / ( J )  

we have that, for fixed q, when H:(J)  is positive then H i ( J )  is infinite, and when 
H i ( J )  is finite, H i ’ ( J )  must be zero. Thus there exists a unique point T ~ , , ( J )  such 
that H ; ( J )  is zero when T <  T ~ , , ( J )  and H i ( J )  is cc when T >  T ~ , + ( J ) .  

To be correct one could have, for fixed q and for all T E R, H i ( J )  = + cc or H i ( J )  = 0. 
In the first case T ~ , + ( J )  = -cc and in the second one T ~ , , ( J )  =+W.  But, since in a 
Euclidean space the Hausdorff dimension of any set is finite, it is easy to see that 
T ~ , + ( J )  # -CC for q > 0 and T ~ , + ( J )  # +cc for q < O .  However, these extreme cases do 
not happen for the systems which satisfy (5.1) and (5.15) as a consequence of theorem 
5.2 and proposition 5.3 quoted below. 

We call T ~ , +  ( J )  the (9, p )  Hausdorff index of J,  remarking on the fact that it depends 
both on q and the defining measure p. Clearly the measure H i ( J )  evaluated for 
7 = T ~ , + ( J )  may be 0, finite or infinite; moreover, it is easy to show that, for fixed q, 
T ~ , , ( J ’ )  2 T ~ , + ( J )  when J ’ c  J. Since we are thinking of J as an invariant set for some 
transformation on M, from now on we suppose that J be a Borel subset of M and 
p ( J )  = 1. Then, in analogy with (5.3), we define the generalised dimensions of J as 

O,,,(J)(q- I ) =  T q , + ( J ) .  (5.7) 

D , ,  ( J )  Q,, ( J ’ )  when J ‘ c  J and q >  1 (5.8) 
Oq,,(J) 3 Dq.+(J’) when J ’ c  J and q < 1. (5.9) 

By the monotony property of T ~ , + ( J )  as a set function we have 

For q = 0 we clearly obtain Do,,(J) = d H ,  the Hausdorff dimension of J. To make this 
more precise the relationship between the Hausdorff dimension and the Hausdorff 
index, and motivated by the inequalities (5.8) and (5.9), it is natural to put the following. 

Definition 5.1. Let p a Borel probability measure on M. We define the generalised 
dimensions of the measure p as 

D,(pu)= $f, Dq,,(Y) when q s  1 (5.10) 

D q ( / 4 =  ;;E Q7.+(Y) when q 3  1. (5.11) 
+ ( Y ) = l  

+ L ( Y ) = l  

Theorem 5.2. In the hypothesis of definition 5.1 and the existence of the limit (5.1) 
we have 

D q ( p )  = Dq(p)  = P  vq E R. (5.12) 

Prooj It will be sufficient to show that, for every p measurable subset jc M where 
the limit (5.1) holds everywhere, we have Pq - ~ ~ , , ( j )  = P, q E R.-. 
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Let us substitute the continuous variable 1 with a descending sequence I ,  + 0, n +a, 
then fix a sequence &k + 0, k + a. By the proof of Egorov's theorem (see [37]), we 
can construct an increasing sequence of p measurable sets { J k } ? = I ,  Jk c J ,  of measure 
p(Jk) > 1 - &k where the convergence in (5.1) is uniform for n +cc and such that 

lim p ( ~ ~ )  = p ( J )  = 1. 
k-tm 

Now we compute H:,, , ,(Jk) covering Jk with closed balls {B j (k ,  x)},"=,, x E Jk, and whose 
diameter is less than I , .  Then, for every S > 0, there is an n, > 0 such that, uniformly 
on Jk and up to a finite constant deriving from the comparison between the diameter 
of the ball and its radius, 

00 

S inf 1 [diam Bj(k ,  x ) ) ] ( ~ - ' ) ~ - '  
6, E %,, j 1 

for n >  n, and 420; for q < O  similar arguments apply?. Taking first the limit for 
n + +a and since S is arbitrary, we get 

Hi(Jk) = K p q - ~ ( J k )  (5.13) 
where Kpq-?(Jk) is the (pq - T )  Hausdorff measure of Jk [29]. Starting from the fact 
that, for fixed q, T ' <  .,,,(Jk) implies that pq - T ' >  d H ( J k )  and T '>  T ~ , & ( J ~ )  implies that 
pq - T ' <  d H ( J k ) ,  where d H ( J k )  is the Hausdorf€ dimension of Jk, it is easy to see that 

P q - T q , & ( J k ) = d H ( J k ) *  (5.14) 

Since, for every k 2 1 and q fixed, we have 

Tq, f i (Jk )  Tq,p(Jk+l)  

then 

On the other hand, we have 

lim H?(Jk) = H,i.(J) = o 
k-cc  

from which 

Tq, ,  (-0 5 Fq. 

Then Fq = ~ ~ + ( f ) .  
A similar argument applies to the Hausdorff dimension. Thus we finally get 

pq  IT^,&(^) = dH(J). By the very choice of 7 and by proposition 2.1 in [16], we have 
d H ( J )  = p. This finishes the proof. 

't To be correct, we have to fix the non-increasing sequence I,, in such a way that log /,,+,/log I,, + 1, as in 
B 2. Then one can show that, for every S > 0, there exists a n6 > 0 such that for every I < I,,, one has uniformly 
on X E  J ,  

Replacing the constants ( P  - S) and ( P  + 8) with ( P  - S ) / ( l +  S) and ( P  + S)( 1 + S), respectively, in the 
inequalities before (5.13), we can continue the proof in the same manner. 
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Also in this context, the Hausdorff dimension of the measure plays a fundamental role 
in the characterisation of the fractal geometry of a set. When the limit (5.1) does not 
exist, following the same ideas of theorem 5.2 it is not difficult to prove the following 
proposition. 

Proposition 5.3. Suppose that p almost everywhere x E M there exist two finite constants 
and P such that uniformly in x 

Then 

(5.15) 

( 5 . 1 6 ~ )  

(5.166) 

When q + +CO, the last relation simply becomes 

e .s Dq ( p 1 s P q + +CO. 

As we have already seen, for some dynamical systems, such as the C 2  diffeomorphisms 
of a compact surface or the mixing repellers, the bounds e and P are exactly known. 

Now we leave the set function (5 .5 )  and return to the partition function (5.3) and 
consider a Markov partition of Ao of a conformal mixing repeller J invariant under 
a mapping T of degree s. An easy generalisation of theorem 4.1 allows us to endow 
J with a balanced measure p B .  If we rewrite the partition function r(q, T )  as (we use 
here the notation of theorem 4.6): 

(5.17) 

we can prove that, when n + +CO, the changeover point T ( q )  is related in a simple 
manner to the topological pressure. More precisely we have this proposition. 

Proposition 5.4. Given a conformal mixing repeller of a transformation T of degree s 
and the balanced measure on it, for every q E R, the changeover point T ( q )  is the 
unique solution of the equation: 

(5.18) 

Proof: The proof is an easy consequence of theorem 4.6 and the fact that the balanced 
measure of an atom ME E A" is simply s - ( " + ' )  times the measure of an atom of A'. 

P ( T  T ( 4 )  l og l l~xTI l )  = 4 1% s = qh,,,. 

A considerable improvement of proposition 5.4 is in [38] where we are able to compute 
the spectrum of the generalised dimensions with respect to the equilibrium measures 
(denoted now as p P )  for the function: - p  log(lD.,T/1, p ER. More precisely, using the 
Walter theory of the Ruelle-Perron-Frobenius operator [39], we bound the pp measure 
of an atom MZ of a Markov partition, uniformly in n and on J. This is the central 
step to obtain proposition 5.5. 
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Proposition 5.5. In the hypothesis of proposition 5.4, and if we put on the repeller 
the equilibrium measure pp,  the relative generalised dimensions D:(J)  satisfy the 
equation: 

P ( T ,  P : ( J ) ( S  - 1) -PSI 1ogIlnTll) = SWT,  -P logllD,TII). (5 .19 )  

For p = 0 we obtain proposition 5.4, while for P = d, we find that all the dimensions 
D>(J)  are simply equal to the Hausdorff dimension, showing that the fractal appears 
uniform if ‘observed’ by this measure. We recall that the latter is equivalent to the dH 
Hausdorff measure of J. 

6. Concluding remarks 

Results like (5.16) have been recently proposed in a few works [40-421. They refer 
especially to disconnected invariant sets, where the role of the Markov partition is 
taken by the intervals which hierarchically construct the set (see, for example, the 
‘scales’ of the Cantor sets described in 8 4). 

It is possible to extend the same formalism to non-hyperbolic sets. In this case, if 
1 1  D,TiJ = 0, for x belonging to the invariant set J, one cannot apply the topological 
definition of the pressure ( 0  2) and hence the variational principle (3.2), but it may 
happen that J be the closure of the fixed points of T” and also that the thermodynamic 
limit (3.3) exists. This is the case for the map T:[-2,2] -f [-2,2], defined as T ( x )  = 
x2-2. The analytic computation of the limit (3.3) for the function cp = 
- p  logllD,TII, p E R ,  shows that the pressure, as a function of p, admits a phase 
transition for p = -1. A similar calculation can be performed for the tent map [43] 
and also in this case there is a phase transition for the pressure. Finally we briefly 
show how to extend the theory to axiom A attractors A in a two-dimensional 
manifold, which are locally the Cartesian product of a Cantor set with an interval. 
We consider a Markov partition do of A and endow A with the physical measure 
(Sinai-Bowen-Ruelle measure [17]). The intersection of the stable side of each 
rectangle A z ~ d ’  with A gives a partition of W s ( x ) f l A ,  where { W s ( x ) }  denotes 
the stable foliation. Now we iterate do: the stable sides of the A t  dissected in an 
equal number of parts, say s, which we denote by A ” , ,  . . . . , A”,. We suppose that 
the s scales A , ,  . . . , A,  of this dissection and the conditional probabilities of the Ah, 
(along the contracting subspaces) p , ,  . . . , p , ,  are the same for all the rectangles 
and moreover, as a first approximation, that the process is self-similar for the 
successive iterates of do. As a second approximation we use the s2 scales deriving 
from the application of T 2  and so on, according to the scheme developed in theorem 
4.3. The knowledge of the A,  and p ,  is sufficient to construct the partition function 
(5.15) and then to compute the generalised dimensions of the (Cantorian) intersection 
of h with the stable manifolds (the dimensions of the intersection of A with the unstable 
manifolds are all equal to 1, since the physical measure is smooth along the unstable 
subspaces). 

In a future publication we will show how to numerically compute the A,  and the 
p , ,  by the direct calculation of the generalised Lyapunov exponents [42,43]. The 
procedure can also be applied to non-hyperbolic attractors (Htnon map) to get a 
‘degree’ of the non-hyperbolicity of the set. In the case of the generalised Baker 
transformation, the preceding calculations can be performed analytically, and we refer 
to [42] for the details. 
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Note added. After this work was done, we became aware of a paper by Bohr and Rand [44], where a few 
results similar to those quoted in I 3  have been proved. Collecting theorem 6 in [44] with equation (4.11) 
we obtain another dynamical interpretation of the divergence abscissa a with respect to the balanced measure 
for linear Cantor set with s scales (and, possibly, for each non-linear Cantorian mapping with s inverses). 
We then have 

log s2 - ap, 
hk, = 

l + a  

where pT is the theoretical escape rate and h - ,  is the ( - a )  Renyi entropy with respect to the equilibrium 
measure for the function -loglL’(x)l. 
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